Differential equations of the first-order (theory)

Differential equation that separates the variables

$\mathrm{y}^{`}=\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{y}) \Leftrightarrow \frac{d y}{d x}=f(x) g(y) \Leftrightarrow \frac{d y}{g(y)}=f(x) d x \Leftrightarrow \int \frac{d y}{g(y)}=\int f(x) d x+c \quad \longrightarrow$ general integral
If there is \mathbf{b} so that $\mathbf{g}(\mathbf{b})=\mathbf{0}$ then $\mathbf{y}=\mathbf{b}$ is solution.

Homogeneous differential equations

$\mathrm{y}^{`}=\mathrm{f}\left(\frac{y}{x}\right)$ Can be solved by replacement $\frac{y}{x}=z \longrightarrow \mathrm{y}^{`}=\mathrm{z}^{+} \mathrm{xz}$. After replacement this differential equation is reduced to differential equation that separates the variables.

For $\mathrm{x}=0(\mathrm{y} \neq 0)$ if there is z_{k} from $\mathrm{R} ; \mathrm{f}\left(\mathrm{z}_{\mathrm{k}}\right)-\mathrm{z}_{\mathrm{k}}=0$ then $\mathrm{y}=\mathrm{z}_{\mathrm{k}} \mathrm{x}(\mathrm{x}>0)$ and $\mathrm{y}=\mathrm{z}_{\mathrm{k}} \mathrm{x}(\mathrm{x}<0)$
Point $(0,0)$ is a singular point, and excluded from the domain.

Differential equation in form $\mathbf{y}^{`}=\mathbf{f}\left(\frac{a x+b y+c}{a_{1} x+b_{1} y+c_{1}}\right)$
Can be solved by the introduction of replacement: $\mathrm{x}=\mathrm{u}+\alpha$ and $\mathrm{y}=\mathrm{v}+\beta$, where :
$d x=d u ; d y=d v$ and $v=v(u)$. We are looking for unknown constants α and β.
$\frac{d v}{d u}=f\left(\frac{a u+b v+a \alpha+b \beta+c}{a_{1} u+b_{1} v+a_{1} \alpha+b_{1} \beta+c_{1}}\right)$, from here must be: $\quad a \alpha+b \beta+c=0$ and $a_{1} \alpha+b_{1} \beta+c_{1}=0$
If $\left|\begin{array}{cc}a & b \\ a_{1} & b_{1}\end{array}\right|=0$ then $\mathrm{a}=\mathrm{a}_{1} \mathrm{k}$ and $\mathrm{b}=\mathrm{b}_{1} \mathrm{k} . \quad$ If $\quad\left|\begin{array}{cc}a & b \\ a_{1} & b_{1}\end{array}\right| \neq 0$ then $\quad \frac{d v}{d u}=g\left(\frac{v}{u}\right)$ is homogeneous differential equation.

Linear differential equations

Form is: $\quad \mathbf{y}^{`}+\mathbf{p}(\mathbf{x}) \mathbf{y}=\mathbf{q (x)}$ and can be solved by formula:

$$
\mathrm{y}(\mathrm{x})=e^{-\int p(x) d x}\left(c+\int q(x) e^{\int p(x) d x} d x\right)
$$

Bernoulli differential equation

Form is: $\mathbf{y}^{\mathbf{`}}+\mathbf{p}(\mathbf{x}) \mathbf{y}=\mathbf{q}(\mathbf{x}) \mathbf{y}^{\mathbf{n}}$
Can be solved by the replacement : $\mathrm{z}=\mathrm{y}^{1-\mathrm{n}}$, then is $\mathrm{z}^{`}=(1-\mathrm{n}) \mathrm{y}^{-\mathrm{n}} \mathrm{y}^{`}$.
After replacement we get linear differential equation.

Lagrange differential equations

Form is: $\mathbf{y}=\mathbf{x A}\left(\mathbf{y}^{`}{ }^{`}+\mathbf{B}\left(\mathbf{y}^{`}\right)\right.$
Replacement: $\mathrm{y}^{`}=\mathrm{p}, \frac{d y}{d x}=p$, then is: $\mathrm{dy}=\mathrm{pdx}$
$y=x A(p)+B(p) \quad$ After differentiation from this equation we get linear differential equation:

$$
\frac{d x}{d p}-\frac{A^{`}(p)}{p-A(p)} x=\frac{B^{`}(p)}{p-A(p)}
$$

Clero differential equations

Form is: $\mathbf{y}=\mathbf{x y}{ }^{`}+\mathbf{A}\left(\mathbf{y}^{`}\right)$
Replacement: $\mathrm{y}^{`}=\mathrm{p}, \frac{d y}{d x}=p \longrightarrow \mathrm{dy}=\mathrm{pdx}$
After differentiation we have: $x+A^{\prime}(p)=0$ or $d p=0$

Riccati differential equations

Form is: $\mathbf{y}^{`}=\mathbf{P}(\mathbf{x}) \mathbf{y}^{\mathbf{2}}+\mathbf{Q}(\mathbf{x}) \mathbf{y}+\mathbf{R}(\mathbf{x})$

1) If P, Q, R are constants , then this is differential equation that separates the variables
2) If $\mathrm{y}^{\prime}=\mathrm{Ay}^{2}+\frac{B}{x} y+\frac{C}{x^{2}}$ replacement: $\mathrm{z}=\mathrm{yx} \quad$ where is $\mathrm{z}=\mathrm{z}(\mathrm{x})$
3) If you know one particular solution $\mathrm{y}_{1}(\mathrm{x})$, then take the replacement: $\mathrm{y}(\mathrm{x})=\mathrm{y}_{1}(\mathrm{x})+\frac{1}{z(x)}$ and after that we get linear differential equation.

METHOD with PARAMETERS

If we have function in form $F\left(x, y, y^{`}\right)=0$

1) If $\mathrm{y}=\mathrm{f}\left(\mathrm{x}, \mathrm{y}^{`}\right)$ then replacement is : $\mathrm{y} ` \mathrm{p}, \frac{d y}{d x}=p \longrightarrow \mathrm{dy}=\mathrm{pdx}$
$\mathrm{dy}=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d p$, in here replace $\mathrm{dy}=\mathrm{pdx} \ldots . .$.
2) If $x=g\left(y, y^{`}\right)$ replacement is $y^{`}=p, d y=p d x$
$\mathrm{dx}=\frac{\partial g}{\partial y} d y+\frac{\partial g}{\partial p} d p$ replace $\mathrm{dx}=\frac{d y}{p}$ and solve $\ldots \ldots$.

Differential equations with total differential

Form is: $\quad P(x, y)+Q(x, y)=0$
Theorem: $\mathrm{P}(\mathrm{x}, \mathrm{y})+\mathrm{Q}(\mathrm{x}, \mathrm{y})=0$ is differential equation with total differential if and only if $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$
Can be solved by formula: $\mathrm{C}=\int P(x, y) d x+\int\left[Q-\frac{\partial}{\partial y} \int P(x, y) d x\right] d y$

Integrating factor

If $P(x, y)+Q(x, y)=0$ is not differential equation with total differential, we are looking for function $\mu=\mu(x, y)$, so the equation $\mu(\mathrm{x}, \mathrm{y}) \mathrm{P}(\mathrm{x}, \mathrm{y})+\mu(\mathrm{x}, \mathrm{y}) \mathrm{Q}(\mathrm{x}, \mathrm{y})=0$ become differential equation with a total differential. Function $\mu=\mu(x, y)$ is integrating factor.

1) If $\mu(\mathrm{x}, \mathrm{y})=\mu(x)$ then:
$\int \frac{d \mu}{\mu}=\int \frac{1}{Q}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right) d x$
3)If $\mu(\mathrm{x}, \mathrm{y})=\mu(\mathrm{w}(\mathrm{x}, \mathrm{y}))$
$\int \frac{d \mu}{\mu}=\int \frac{\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}}{P \frac{\partial w}{\partial y}-Q \frac{\partial w}{\partial x}} d w$
