Differential equation that separates the variables

$$y = f(x) g(y) \iff \frac{dy}{dx} = f(x)g(y) \iff \frac{dy}{g(y)} = f(x)dx \iff \int \frac{dy}{g(y)} = \int f(x)dx + c$$
 seneral integral

If there is **b** so that $\mathbf{g}(\mathbf{b}) = \mathbf{0}$ then $\mathbf{y} = \mathbf{b}$ is solution.

Homogeneous differential equations

 $y = f(\frac{y}{x})$ Can be solved by replacement $\frac{y}{x} = z$ \longrightarrow y = z + xz. After replacement this differential equation is reduced to differential equation that separates the variables.

For x=0 (y \neq 0) if there is z_k from R; $f(z_k) - z_k = 0$ then $y = z_k x$ (x>0) and $y = z_k x$ (x<0)

Point (0,0) is a singular point, and excluded from the domain.

Differential equation in form $y' = f(\frac{ax+by+c}{a_1x+b_1y+c_1})$

Can be solved by the introduction of replacement: $x = u + \alpha$ and $y = v + \beta$, where :

dx=du; dy= dv and v= v(u). We are looking for unknown constants α and β .

$$\frac{dv}{du} = f(\frac{au + bv + a\alpha + b\beta + c}{a_1u + b_1v + a_1\alpha + b_1\beta + c_1}), \text{ from here must be:} \quad a\alpha + b\beta + c = 0 \text{ and } a_1\alpha + b_1\beta + c_1 = 0$$

If $\begin{vmatrix} a & b \\ a_1 & b_1 \end{vmatrix} = 0$ then $a = a_1 k$ and $b = b_1 k$. If $\begin{vmatrix} a & b \\ a_1 & b_1 \end{vmatrix} \neq 0$ then $\frac{dv}{du} = g(\frac{v}{u})$ is homogeneous differential

equation.

Linear differential equations

Form is: y' + p(x) y = q(x) and can be solved by formula:

$$\mathbf{y}(\mathbf{x}) = e^{-\int p(\mathbf{x})d\mathbf{x}} \left(c + \int q(\mathbf{x})e^{\int p(\mathbf{x})d\mathbf{x}}d\mathbf{x}\right)$$

Bernoulli differential equation

Form is: $\mathbf{y} + \mathbf{p}(\mathbf{x}) \mathbf{y} = \mathbf{q}(\mathbf{x}) \mathbf{y}^n$

Can be solved by the replacement : $z = y^{1-n}$, then is $z^{`} = (1-n) y^{-n} y^{`}$.

After replacement we get linear differential equation.

Lagrange differential equations

Form is: $\mathbf{y} = \mathbf{x}\mathbf{A}(\mathbf{y}) + \mathbf{B}(\mathbf{y})$

Replacement: y' = p, $\frac{dy}{dx} = p$, then is: dy = pdx

y=xA(p)+B(p) After differentiation from this equation we get linear differential equation:

 $\frac{dx}{dp} - \frac{A(p)}{p - A(p)} x = \frac{B(p)}{p - A(p)}$

Clero differential equations

Form is: $\mathbf{y} = \mathbf{x}\mathbf{y}^{+}\mathbf{A}(\mathbf{y}^{-})$

Replacement: y' = p, $\frac{dy}{dx} = p$ \longrightarrow dy = pdxAfter differentiation we have: x+A'(p)=0 or dp=0

Riccati differential equations

Form is: $\mathbf{y} = \mathbf{P}(\mathbf{x}) \mathbf{y}^2 + \mathbf{Q}(\mathbf{x})\mathbf{y} + \mathbf{R}(\mathbf{x})$

- 1) If P,Q,R are constants, then this is differential equation that separates the variables
- 2) If $y'=Ay^2+\frac{B}{x}y+\frac{C}{x^2}$ replacement: z = yx where is z = z(x)
- 3) If you know one particular solution $y_1(x)$, then take the replacement: $y(x) = y_1(x) + \frac{1}{z(x)}$ and after that we get linear differential equation.

METHOD with PARAMETERS

If we have function in form F(x,y,y)=0

1) If
$$y = f(x, y')$$
 then replacement is : $y' = p$, $\frac{dy}{dx} = p$ \longrightarrow $dy = pdx$
 $dy = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dp$, in here replace $dy = pdx$

2) If $x = g(y,y^{*})$ replacement is $y^{*} = p$, dy = pdx

$$dx = \frac{\partial g}{\partial y} dy + \frac{\partial g}{\partial p} dp$$
 replace $dx = \frac{dy}{p}$ and solve

Differential equations with total differential

Form is: P(x,y) + Q(x,y) = 0

Theorem: P(x,y) + Q(x,y) = 0 is differential equation with total differential if and only if $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$

Can be solved by formula: $C = \int P(x, y)dx + \int [Q - \frac{\partial}{\partial y} \int P(x, y)dx]dy$

Integrating factor

If P(x,y) + Q(x,y) = 0 is not differential equation with total differential, we are looking for function $\mu = \mu(x, y)$, so the equation $\mu(x,y) P(x,y) + \mu(x,y) Q(x,y) = 0$ become differential equation with a total differential. Function $\mu = \mu(x, y)$ is integrating factor.

1) If $\mu(x,y) = \mu(x)$ then: 2) If $\mu(x,y) = \mu(y)$ $\int \frac{d\mu}{\mu} = \int \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) dx$ $\int \frac{d\mu}{\mu} = \int \frac{1}{P} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dy$

3) If $\mu(\mathbf{x},\mathbf{y}) = \mu(\mathbf{w}(\mathbf{x},\mathbf{y}))$

$$\int \frac{d\mu}{\mu} = \int \frac{\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}}{P\frac{\partial w}{\partial y} - Q\frac{\partial w}{\partial x}} dw$$